Program Analysis and Implementation
Techniques for Real-Time and Embedded
Software Interoperability

Abstract

We propose a new set of program analysis and implementation tech-
nologies to enable the integration of mainstream development practices
and languages into the development of real-time and embedded systems.
These technologies include analyses that extract the resource require-
ments of the real-time components and a set of synchronization and
scheduling techniques that make it possible for these two traditionally
disjoint kinds of software to interoperate.

Martin Rinard
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
rinnard@lcs.mit.edu

October 30, 2001



1 Introduction

Real-time software and embedded software has a set of extreme requirements:
the system must execute reliably and predictably, consume a limited and pre-
dictable amount of resources, and meet harsh real-time constraints for respond-
ing to events in the real world. These requirements have led to development
strategies that implement real-time systems in isolation using custom hardware
and software such as real-time operating systems. Programs typically are writ-
ten in a constrained style to ensure predictable execution times and memory
consumption.

In the future there will be enormous economic pressure to reintegrate the field
of real-time and embedded software to use languages and development practices
drawn from more mainstream approaches. These approaches tend to use a set
of abstractions and concepts (dynamic memory allocation, garbage collection,
arbitrary object references) that lead to good programmer productivity but
conflict with the standard real-time system requirements of reliability, minimal
resource use, and preditable execution.

We see two levels of integration as desirable. The first is for real-time and
embedded software to interoperate successfully with other parts of the system
(such as user interfaces) that were originally developed for other, less stringent
environments. The second is to integrate development approaches and engineers
from more mainstream areas of software development. In both cases, it will be
extremely desirable to use mainstream languages as the implementation vehicle
for the real-time and embedded part of the software.

2 Our Approach

We propose to develop technology to enable developers to use standard lan-
guages (such as Java and other dynamic object-oriented languages) to develop
real-time and embedded systems. We see the key issues as 1) using program
analysis to extract predictability guarantees for the real-time and embedded
components of the overall system and 2) develolping implementation mecha-
nisms that allow real-time and embbeded software to interoperate with parts of
the system originally developed for other less-constrained purposes.

3 Static Analysis

Several areas of static analyisis will be crucial to the success of this endeavor:

*This research was supported in part by DARPA Contract F33615-00-C-1692, NSF Grant
CCRO00-86154, NSF Grant CCR00-63513, and an NSERC graduate scholarship.



¢ Memory Consumption: We expect to see the deployment of real-time
and embedded software (written in Java, for example) that uses dynamic
memory allocation. In this scenario, we see a need for program analysis
tools that can compute the amount of memory required to execute each
real-time or embedded computation. The system would then set aside that
amount of memory to ensure that the computation would never require
more resources than are available.

e Object Lifetimes: To eliminate garbage collection pauses in real-time
software, we see a need for a program analysis that can analyze the life-
times of objects and use an explicity allocate/free memory management
strategy for real-time code.

¢ Region-Based Memory Allocation: Region-based memory allocation
is a promising strategy for real-time systems because it enables the sys-
tem to allocate a block of memory for a computation, run the computation
without memory management overhead in that region, then deallocate the
region as a unit when the computation terminates. This strategy is attrac-
tive enough to have been adopted in the recent Real-Time Specification
for Java.

The problem is that the use of such constructs raises the possibility of
dangling references that go from the standard heap memory to the region
memory. We see a need for a static analysis to verify that the program
never creates these references. Such an analysis would enable the software
to safely use region-based memory allocation.

¢ Worst-Case Execution Time Analysis: We see a need to analyze the
program to compute worst-case execution times for real-time computa-
tions. We see the primary challenge as uncertainty about the memory
system behavior caused by dynamic memory allocation and a potential
lack of control over the addresses containing data.

4 Implementation Mechanisms

We see a variety of implementation mechanisms as required to enable real-
time and embedded software to safely interact with software written for more
mainstream applications. We assume that these two kinds of software will share
objects and interact by performing atomic operations that update the shared
objects.

In this context, mutual exclusion raises the possibility that the non-real-time
software could unacceptably delay the real-time software. Such delays could
come from garbage collection pauses during atomic operations (note that this
problem eliminates priority inheritance as a solution to the problem of delaying



real-time threads) or from faulty mainstream applications that fail while holding
locks or simply neglect to release the lock.

In this scenario, the software needs a way to make the atomic operations of
the real-time system execute regardless of the actions of the other parts of the
system. We see optimistic synchronization operations on multiple objects as
the way to eliminate this problem. The challenge is to develop protocols that
operate effectively and efficiently enough to be used in deployed systems.

A second implementation problem has to do with real-time scheduling. Tra-
ditional systems use a real-time operating system with real-time threads. This
approach places a large amount of operating system code between the appli-
cation and the realization of its real-time constraints. We instead propose a
software-enabled scheduling mechanism in which, under the control of code au-
tomatically inserted by the compiler, the real-time threads continually check to
see if they should activate a new task with real-time constraints. We expect the
advantages to include faster response time to real-time requests and more con-
trol over the real-time scheduler. Ideally, engineers will be able to exploit this
control to deliver useful scheduling algorithms that better control the interaction
with the real world.

5 Conclusion

We propose a new set of program analysis and implementation technologies to
enable the integration of mainstream development practices and languages into
the development of real-time and embedded systems. These technologies include
analyses that extract the resource requirements of the real-time components and
a set of synchronization and scheduling techniques that make it possible for these
two traditionally disjoint kinds of software to interoperate.



